94 research outputs found

    A new revocable and re-delegable proxy signature and its application

    Get PDF
    With the popularity of cloud computing and mobile Apps, on-demand services such as on-line music or audio streaming and vehicle booking are widely available nowadays. In order to allow efficient delivery and management of the services, for large-scale on-demand systems, there is usually a hierarchy where the service provider can delegate its service to a top-tier (e.g., countrywide) proxy who can then further delegate the service to lower level (e.g., region-wide) proxies. Secure (re-)delegation and revocation are among the most crucial factors for such systems. In this paper, we investigate the practical solutions for achieving re-delegation and revocation utilizing proxy signature. Although proxy signature has been extensively studied in the literature, no previous solution can achieve both properties. To fill the gap, we introduce the notion of revocable and re-delegable proxy signature that supports efficient revocation and allows a proxy signer to re-delegate its signing right to other proxy signers without the interaction with the original signer. We define the formal security models for this new primitive and present an efficient scheme that can achieve all the security properties. We also present a secure on-line revocable and re-delegate vehicle ordering system (RRVOS) as one of the applications of our proposed scheme

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments

    Mergeable and revocable identity-based encryption

    Get PDF
    Identity-based encryption (IBE) has been extensively studied and widely used in various applications since Boneh and Franklin proposed the first practical scheme based on pairing. In that seminal work, it has also been pointed out that providing an efficient revocation mechanism for IBE is essential. Hence, revocable identity-based encryption (RIBE) has been proposed in the literature to offer an efficient revocation mechanism. In contrast to revocation, another issue that will also occur in practice is to combine two or multiple IBE systems into one system, e.g., due to the merge of the departments or companies. However, this issue has not been formally studied in the literature and the naive solution of creating a completely new system is inefficient. In order to efficiently address this problem, in this paper we propose the notion of mergeable and revocable identity-based encryption (MRIBE). Our scheme provides the first solution to efficiently revoke users and merge multiple IBE systems into a single system. The proposed scheme also has several nice features: when two systems are merged, there is no secure channel needed for the purpose of updating user private keys; and the size of the user private key remains unchanged when multiple systems are merged. We also propose a new security model for MRIBE, which is an extension of the security model for RIBE, and prove that the proposed scheme is semantically secure without random oracles

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    SIMC 2.0: Improved Secure ML Inference Against Malicious Clients

    Full text link
    In this paper, we study the problem of secure ML inference against a malicious client and a semi-trusted server such that the client only learns the inference output while the server learns nothing. This problem is first formulated by Lehmkuhl \textit{et al.} with a solution (MUSE, Usenix Security'21), whose performance is then substantially improved by Chandran et al.'s work (SIMC, USENIX Security'22). However, there still exists a nontrivial gap in these efforts towards practicality, giving the challenges of overhead reduction and secure inference acceleration in an all-round way. We propose SIMC 2.0, which complies with the underlying structure of SIMC, but significantly optimizes both the linear and non-linear layers of the model. Specifically, (1) we design a new coding method for homomorphic parallel computation between matrices and vectors. It is custom-built through the insight into the complementarity between cryptographic primitives in SIMC. As a result, it can minimize the number of rotation operations incurred in the calculation process, which is very computationally expensive compared to other homomorphic operations e.g., addition, multiplication). (2) We reduce the size of the garbled circuit (GC) (used to calculate nonlinear activation functions, e.g., ReLU) in SIMC by about two thirds. Then, we design an alternative lightweight protocol to perform tasks that are originally allocated to the expensive GCs. Compared with SIMC, our experiments show that SIMC 2.0 achieves a significant speedup by up to 17.4Γ—17.4\times for linear layer computation, and at least 1.3Γ—1.3\times reduction of both the computation and communication overheads in the implementation of non-linear layers under different data dimensions. Meanwhile, SIMC 2.0 demonstrates an encouraging runtime boost by 2.3∼4.3Γ—2.3\sim 4.3\times over SIMC on different state-of-the-art ML models

    Secure fine-grained access control and data sharing for dynamic groups in the cloud

    Get PDF
    IEEE Cloud computing is an emerging computing paradigm that enables users to store their data into a cloud server to enjoy scalable and on-demand services. Nevertheless, it also brings many security issues since cloud service providers (CSPs) are not in the same trusted domain as users. To protect data privacy against untrusted CSPs, existing solutions apply cryptographic methods (e.g., encryption mechanisms) and provide decryption keys only to authorized users. However, sharing cloud data among authorized users at a fine-grained level is still a challenging issue, especially when dealing with dynamic user groups. In this paper, we propose a secure and efficient finegrained access control and data sharing scheme for dynamic user groups by (1) defining and enforcing access policies based on the attributes of the data; (2) permitting key generation center (KGC) to efficiently update user credentials for dynamic user groups; and (3) allowing some expensive computation tasks to be performed by untrusted CSPs without requiring any delegation key. Specifically, we first design an efficient revocable attributebased encryption (RABE) scheme with the property of ciphertext delegation by exploiting and uniquely combining techniques of identity-based encryption (IBE), Attribute-based Encryption (ABE), subset-cover framework and ciphertext encoding mechanism. We then present a fine-grained access control and data sharing system for on-demand services with dynamic user groups in cloud. The experimental data shows that our proposed scheme is more efficient and scalable than the state-of-the-art solution

    Pine: Enabling privacy-preserving deep packet inspection on TLS with rule-hiding and fast connection establishment

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fund, Singapore Management Universit

    Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish

    Get PDF
    ) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1.Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents
    • …
    corecore